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BACKGROUND: Studies of the effects of prenatal environmental exposures on postnatal outcomes are particularly vulnerable to live birth bias; i.e., the
bias that arises from the necessary restriction of the analysis to live births when that is influenced by both the exposure under study A and unmeasured
factors U that also affect the outcome.
OBJECTIVES: In the context of a recent publication of nitrogen dioxide (NO2) and autism spectrum disorder (ASD) that found an odds ratio (OR) of
0.77 per 5:85 ppb NO2 during pregnancy, we aimed to examine what parameters would be needed to account for this protective association through
live birth bias.

METHODS: We simulated the magnitude of bias under two selection mechanisms and when both mechanisms co-occur, assuming a true null effect.
Simulation input parameters were based on characteristics of the original study and a range of plausible values for the prevalence of unmeasured fac-
tor U and the ORs for the selection effects (i.e., the effects of NO2 and U on loss and of U on ASD). Each scenario was simulated 1,000 times.

RESULTS: We found that the magnitude of bias was small when NO2 and U independently influenced pregnancy loss (collider-stratification without
interaction), was stronger when NO2-induced loss preferentially occurred in U=1 (depletion of susceptibles), and was strongest when both mecha-
nisms worked together. For example, ORs of 3.0 for NO2-loss, U-loss, U-ASD, and U prevalence= 0:75 yielded NO2-ASD ORs per 5:85 ppb NO2 of
0.95, 0.89, and 0.75 for the three scenarios, respectively. The bias is amplified with multiple Us, yielding ORs as low as 0.51.

DISCUSSION: Our simulations illustrate that live birth bias may lead to exposure–outcome associations that are biased downward, where the extent of
the bias depends on the fetal selection mechanism, the strength of that selection, and the prevalence of U. https://doi.org/10.1289/EHP7961

Introduction
Understanding the health effects of environmental exposures is
critical for identifying and developing preventive interventions
for high-risk populations. However, these effects may not be
identifiable if exposure prevents selection into the study and thus,
observation of the outcome of interest. This process is a form of
‘left truncation’ and can lead to estimates of exposure-outcome
associations that are biased (Howards et al. 2007; Lisonkova and
Joseph 2015). Epidemiological studies of environmental expo-
sures are particularly vulnerable to left truncation as exposures
are typically ubiquitous in time (e.g., participants are already
exposed prior to study initiation), such that exposure-induced
selection processes likely inform the formation of observational
cohorts from which exposure-health effects are estimated.

In studies investigating the effects of prenatal exposures on
outcomes in live-born children, left-truncation can induce a spe-
cific type of selection bias called live-birth bias (Liew et al.
2015a; Raz et al. 2018a). These studies are typically based on
cohorts formed by only live births, where selective survival
between conception and birth can skew the distribution of prena-
tal exposures in the subset available for analysis (i.e., those

conceptions that resulted in a live birth) from the exposure distri-
bution among all conceptions, such that the estimated parameter
in the analyzed subset differs from the parameter in the total pop-
ulation (i.e., all conceptions).

An example of possible live-birth bias is a recent analysis
of traffic-related nitrogen dioxide (NO2) and autism spectrum
disorder (ASD), where the odds ratio (OR) was 0.77 per
5:85 parts per billion (ppb) increase in NO2 during pregnancy
when mutually adjusted for postnatal exposure to NO2 (Raz et al.
2018b); that is, prenatal exposure to NO2 appeared to be protec-
tive against ASD. This paradoxical finding is unlikely to be
causal because we are not aware of a possible biological mecha-
nism for which NO2 may confer beneficial effects on the risk of
ASD, or for human health in general for that matter. It is more
likely that this strong protective association could be attributed to
live-birth bias.

It has been suggested that there are two selection mechanisms
that can lead to live-birth bias (Liew et al. 2015a; Raz et al.
2018a). Although parameterized differently, both mechanisms
can be envisioned as forms of collider-stratification bias (Hernan
and Robins 2020) and can be represented by the directed acyclic
graph (DAG) in Figure 1, which is the same structure as the birth
weight paradox (Hernández-Díaz et al. 2006). We will refer to
these mechanisms here as “collider-stratification without interac-
tion” and “depletion of susceptibles.” In “collider-stratification
without interaction,” exposure A and some unmeasured factor
U—for example, exposure to endocrine disrupting chemicals
that have been associated with pregnancy loss and autism (Jensen
et al. 2015; Kalkbrenner et al. 2014; Krieg et al. 2016; Pelch et al.
2019)—are independent, and each affect selection (S). In “deple-
tion of susceptibles,” which is separate but related to the first
mechanism, exposure A and unmeasured variable U do not have
independent causal effects on fetal loss, but rather loss is depend-
ent on the joint effects of A and U. A potential example of
this mechanism is a gene–environment interaction, whereby
exposure-induced loss preferentially occurs in those who have
the genetic factor U (i.e., the subset of fetuses susceptible to
ASD). Last, both mechanisms described above can also work in
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tandem because they operate through distinct mechanistic path-
ways, in that A and U not only causally interact to affect fetal loss
but also have independent causal effects on fetal loss. It is impor-
tant to note that although the three mechanisms described above
are parameterized differently, they are indistinguishable on a
DAG because DAGs are nonparametric and thus cannot encode
biases that depend on the specific parameterization of the effect.
That is, they all represent the same causal structure (but are para-
meterized differently) where restricting the analysis to live births
(i.e., conditioning on collider S=1) induces a spurious associa-
tion between A and U, which results in a biased A− Y association
(Figure 1).

Unlike other examples of selection bias, such as the birth
weight paradox (Hernández-Díaz et al. 2006), obesity paradox
(Glymour and Vittinghoff 2014; Lajous et al. 2015; Sperrin et al.
2016), or loss to follow-up in cohort studies (Howe et al. 2016),
live-birth bias is less amenable to addressing analytically because
we cannot adjust for selection processes that we cannot observe
(i.e., the necessary data to mitigate this bias are often not avail-
able). Thus, simulations are an invaluable tool for exploring the
influence of live-birth bias on the estimation of the effects of ex-
posure during pregnancy on outcomes in live-born children.
Motivated by the findings of Raz et al. (2018b), we examine
through simulations the magnitude of bias that would result from
analyses under the two hypothetical selection mechanisms as
well as when they operate simultaneously.

Methods

Data-Generating Process
To examine bias from selection on live births under a true null
effect of NO2 on ASD, we simulated a pregnancy cohort of
100,000 conceptions, which we will refer to as the “total popula-
tion,” with data on entire-pregnancy NO2 exposure A, an unmeas-
ured factor U, the ASD outcome Y, and selection indicator S
(Figure 1). Entire-pregnancy NO2 was normally distributed with
mean 16.7 and standard deviation of 4.3 to reflect the distribution
of NO2 found in the original study (Raz et al. 2018b). For sim-
plicity, we ignored the seasonal nature of the NO2 exposure, and
though we treated the exposure as Gaussian, the same principles
would apply for a binary exposure. Unmeasured variable U and
outcome Y were binary variables. The prevalence of U (pU) was
set to be 0.25, 0.50, or 0.75. The baseline odds of Y were set to
be 0.015 to reflect the low incidence of ASD in the original anal-
ysis (Raz et al. 2018b), and the baseline odds of fetal loss were
set to be 0.05, such that the causal effects that lead to selection
bias [i.e., A ! S, U ! S, fAUg ! S (i.e., the effect of the A−U
interaction), and U ! Y], which we will henceforth refer to as

“selection effects,” lead to an overall loss in line with observed
estimates (Wilcox et al. 1988). All selection effects were modeled
in terms of ORs, so that simulated probabilities were correctly
bounded between 0 and 1; and for the A ! S, U ! S,
fAUg ! S, and U ! Y associations (ORAS, ORUS, ORfAUgS,
ORUY , respectively) that were not 1.0 as determined by the selec-
tion mechanism (see “Selection Mechanisms” section below)
were set to all be the same and equal to 1.5, 2.0, 2.5, or 3.0 (for
ORAS, this is per 5:85 ppb increase in NO2, the interquartile range
in the original study). Here, we only considered effects of the
same sign because exposures that are harmful for pregnancy loss
are most likely also harmful for ASD (beneficial exposures would
function in the same manner, in that what is beneficial for loss is
also beneficial for ASD, whereas those of opposite signs that we
considered less plausible would lead to upwardly biased A−U
and A− Y associations among live births). For simplicity of dis-
playing, we will refer to the selection effects ORs as ORS hence-
forth. The probability of loss and the ASD outcome Y for each
fetus i were estimated using the equations below. Equation 1 rep-
resents the probability that the pregnancy will result in a fetal
loss given A and U. Equation 2 represents the probability of the
outcome Y given U, where A is omitted because our simulations
were conducted under the null; that is, there is no causal effect of
A on Y.

P lossið Þ= exp b0 +b1Ai + b2Ui + b3Ai � Uið Þ
1+ exp b0 + b1Ai +b2Ui + b3Ai � Uið Þ: ð1Þ

P Yið Þ= exp c0 + c1Uið Þ
1+ exp c0 + c1Uið Þ: ð2Þ

Selection Mechanisms
To examine bias from collider-stratification with no interaction
[Mechanism 1 (M1)], where bothA andU have independent causal
effects on fetal loss, selection effects were set to the ORS specified
above, except that exp ðb3Þ=ORfAUgS was set to 1. For depletion
of susceptibles [Mechanism 2 (M2)], exp ðb1Þ=ORAS and
exp ðb2Þ=ORUS were set to be 1, whereas exp ðb3Þ=ORfAUgS was
set equal to the prespecifiedORS; that is, A andU do not have inde-
pendent causal effects on fetal loss and loss due to NO2 could only
occur in the subset of fetuses who were exposed to U. Finally, to
examine bias from both mechanisms operating simultaneously
(BothMechanisms [M1+2]), where bothA andU have independent
causal effects on fetal loss and they causally interact on selection,
exp ðb1Þ=ORAS, exp ðb2Þ=ORUS and exp ðb3Þ=ORfAUgS were
set to the specified ORS. For all mechanisms, ORUY =exp ðc1Þ was
set to the prespecified selection effect ORS, such that the extent of
the bias is driven by the differing parameterizations of the relations
between A,U, and S across the three selection mechanisms (and not
the U− Y relationship, which is fixed to be constant for each sce-
nario). To focus only on the bias induced by the selection effects, all
simulations assumed that there was no confounding for the effect of
NO2, loss to follow-up among live-born children, outcome misclas-
sification, or exposure misclassification, such that observed associa-
tions can only be explained by live-birth bias.

Analysis
Each scenario was simulated 1,000 times. For each simulated
data set, we first restricted our analytic sample to live births (i.e.,
S=1) and then performed a logistic regression of ASD status in
children with NO2 exposure to obtain the observed odds ratio
ORAYjS=1 (per 5:85 ppb), which approximates the risk ratio
because the outcome is rare. With the distribution of point

A Y

U

S=1

Figure 1. DAG of the structure of live birth bias. Nitrogen dioxide (NO2)
exposure A affects live births S is also affected by an independent unmeas-
ured risk factor U for ASD (outcome Y). Arrows are direct causal effects,
and the dashed line is a spurious association induced between A and U after
selection on live births (i.e., conditioning on S=1). This DAG has the same
structure as the birthweight paradox (Hernández-Díaz et al. 2006). Note:
ASD, autism spectrum disorder; DAG, directed acyclic graph.
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estimates generated over the 1,000 iterations for each scenario,
we computed the mean ORAYjS=1 and percentile-based 95% simu-
lation intervals (SIs), which are the 2.5th and 97.5th percentiles
of the distribution. Because the simulated truth is that there is no
causal effect, the value of ORAYjS=1 demonstrates the bias ratio,
where greater departures from 1 indicate larger magnitudes of
bias. Furthermore, SIs demonstrate the range of ORAYjS=1 esti-
mates that are consistent with the data generating mechanism for
the specified sample size; for example, if the 95% SIs generated
by a given selection mechanism included the OR of 0.77 found in
the original study (Raz et al. 2018b), it would suggest that this
observed protective association would be consistent with live-
birth bias induced by that mechanism.

To better understand the drivers of bias from the different
selection mechanisms, we also estimated the OR for the associa-
tion between A (NO2 exposure, per 5:85 ppb) and U in the
selected population (ORAUjS=1) using a logistic regression, the
prevalence of U in the selected population (pUjS=1), and their re-
spective 95% SIs. Because both parameters determine the
strength of live-birth bias and are driven by the simulation inputs
ORS and pU, we will henceforth refer to both parameters as “bias
parameters.” The simulation input ORAU is expected to be 1 in
the total population of all conceptions, but the parameter
ORAUjS=1 is expected to be below 1 in the selected population
(i.e., fetuses that survived) because those exposed to both high air
pollution A and U are strongly selected against, because both fac-
tors increase the likelihood of loss. Thus, those exposed to high
air pollution in the selected population are less likely to be
exposed to U (and vice versa) setting up an inverse association
between A and U. Furthermore, the difference between pUjS=1
and pU indicates the extent to which the U ! S and A ! S deter-
mine the prevalence of U in those selected; that is, the expected
value of pUjS=1 is pU in the absence of bias.

Finally, to examine the extent of the bias that would occur if
there were multiple Us involved in the fetal selection process, we
also estimated the value of ORAYjS=1 and its 95% SI for each sce-
nario in the presence of two and then threeUs, where allUs were set
to have the same prevalence and effect on selection. All simulations
and analyses were performed in R (version 3.6.1; R Development

Core Team). See simulation code and documentation at https://
github.com/mleung-harvard/live-birth-bias-simulation and in the
SupplementalMaterial, to explore the extent of potential biases with
any selected parameters.

Results
The results of this simulation study on the bias in average
ORAYjS=1 are shown in Figure 2 and in Table S1. In the presence
of collider-stratification with no interaction (M1), where both
NO2 exposure A and unmeasured variable U have independent
causal effects on fetal loss and therefore selection S (i.e., ORAS
and ORUS were set to the prespecified selection effect, but
ORfAUgS was set to 1), the bias was generally weak (Figure 2;
Table S1). Selection effects of magnitudes 1.5 and 2.0 generated
little to no bias on average across the three values of pU, with
ORAYjS=1 ranging from 0.99 to 1. Only when the selection effects
reached 3.0 did we see larger departures from the null (e.g.,
ORAYjS=1 of 0.94 for pU of 0.5), but these were still relatively
weak, such that the 95% SI (i.e., the distribution of point esti-
mates consistent with this mechanism) still included the null
(Table S1). Examining the bias parameters ORAUjS=1 and pUjS=1,
we observed that stronger selection effects in the total population
yielded a lower ORAUjS=1 (i.e., a stronger inverse association
between A and U), but a smaller pUjS=1 in the selected population
(Figure 3; Table S2); that is, with stronger selection effects, both
parameters deviate further from the underlying population param-
eter, where ORAUjS=1 would be 1, and pUjS=1 would be equal to
pU in the absence of bias.

For depletion of susceptibles (M2), where fetal loss is solely
dependent on the interaction between NO2 exposure A and
unmeasured variable U (i.e.,ORAS and ORUS were set to 1, but
ORfAUgS was set to the prespecified selection effect), the magni-
tude of bias was slightly stronger compared with those generated
by M1 (Figure 2; Table S1). Unlike with M1, with M2, ORAYjS=1
was consistently low, such that several 95% SI did not include
the null (Table S1); for example, if the selection effects were 3.0
and 25% of the total population were exposed to U, then the
observed OR for the NO2 −ASD association would be 0.91 (95%
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Figure 2. Live birth bias of ORAY under different selection effects. Average odds ratios for the association between nitrogen dioxide (NO2; exposure A) and
ASD (outcome Y) among live births S=1 (ORAYjS=1) with varying simulation inputs for the prevalence of the unmeasured risk factor U (pU) and the magni-
tude of selection effects (ORS) under two selection mechanisms (collider-stratification without interaction, and depletion of susceptibles) and when they both
co-occur with a single U, assuming a true null effect of NO2 on ASD. Collider-stratification without interaction (Mechanism 1) occurs when A and U have in-
dependent causal effects on fetal loss, but with no interaction on the multiplicative scale (ORfAUgS =1, and ORAS =ORUS =ORUY =ORS). Depletion of suscepti-
bles (Mechanism 2) occurs when A has a causal effect on fetal loss only in the subset of susceptible fetuses (U =1), but neither A or U have independent
causal effects on fetal loss (ORAS =ORUS =1, and ORfAUgS =ORUY =ORS). Both mechanisms occur when A and U have independent causal effects on fetal
loss, and with interaction on the multiplicative scale (ORAS =ORUS =ORfAUgS =ORUY =ORS). Each scenario was simulated 1,000 times. Points represent the
mean ORAYjS=1 in each scenario. Dashed lines indicate the true null effect of NO2 on ASD (ORAY =1) in the absence of live birth bias, where deviations from
1.0 quantify the magnitude of live birth bias. See Table S1 for corresponding numeric data, including 95% SI. Note: ASD, autism spectrum disorder; OR, odds
ratio; SI, simulation intervals.
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SI: 0.85, 0.97). When selection parameters were relatively weak
(i.e., ORS of 1.5 and 2), corresponding values of ORAUjS=1 (for
the same pU) deviated further from the null under M2 in compari-
son with M1 (Figure 3; Table S2). For example, when the selec-
tion effect ORfAUgS was set to 1.5 (and both ORAS =1 and
ORUS =1) and pU =0:75, ORAUjS=1 was 0.94 for depletion of
susceptibles in compairson with 0.98 for M1.

When both mechanisms worked together (M1+2), where both A
and U had independent causal effects and causally interacted on fetal
loss (i.e.,ORAS,ORUS, andORfAUgS were set to the prespecified selec-
tion effects), the magnitude of bias was usually strongest (Figure 2;
Table S1). For example, if the selection effects were 3.0, and 50% of
the total population were exposed to U (pU =0:50), then the average
OR for ASD by NO2 among live births (ORAUjS=1) would be 0.85
(95%SI: 0.74, 0.97) (Table S1). Even if we only changed the selection
effects to 2.0, the observed OR was 0.90 (95% SI: 0.82, 0.99) (Table
S1). Examining the bias parameters, bothORAUjS=1 and pUjS=1 devi-
ated further from their corresponding population parameters under
M1+2, in comparisonwith bothM1 andM2 (Figure 3; Table S2). For
example, when the prevalence ofU was 0.75, and the selection effect
were set to 3 (ORAS =3, ORUS =3, ORfAUgS =3), ORAUjS=1 = 0:21,
and pUjS=1 = 0:19 for M1+2 in comparison with ORAUjS=1 = 0:77
and pUjS=1 = 0:62 for M1 (ORAS =3, ORUS =3, ORfAUgS =1),
ORAUjS=1 = 0:58, and pUjS=1 = 0:60 for M2 (ORAS =1, ORUS =1,
ORfAUgS =3).

In the presence of multiple Us, the bias is amplified with
increasing number of Us, but the extent of the amplification dif-
fers by selection mechanism as shown in Figure 4 and in Table
S3. For M1, the increase in bias is small overall, yielding small to
moderate associations even in the presence of three Us. For
example, when both ORAS and ORUS for three Us were set to 1.5,

the resulting ORAYjS=1 were 0.99 for all values of pU, compared
with ORAYjS=1 of 1 for all values of pU when only one U was
simulated. When both ORAS and ORUS for three Us were set to
3.0, the resulting ORAYjS=1 ranged from 0.87 to 0.90 across val-
ues of pU, compared with ORAYjS=1 of 0.94–0.95, when only one
U was simulated. The amplification of bias with additional U pa-
rameters was stronger for M2 and strongest when both mecha-
nisms co-occurred (M1+2). For example, when ORfAUgS for
three A−U interactions were set to 1.5 under M2 (ORAS and
ORUS set to 1), ORAYjS=1 ranged from 0.94 to 0.97 in comparison
with 1.0 for all values of pU, when only one U was simulated.
When ORAS, ORUS, and ORfAUgS were set to 1.5 under mecha-
nism M1+2 with three Us, ORAYjS=1 ranged from 0.88 to 0.95,
compared with 0.98 for all values of pU when only one U was
simulated. Bias increased under both mechanisms because the
selection effects increased in magnitude, and the prevalence of U
was high. The most extreme bias occurred when there were three
Us under M1+2, ORS was set to 3.0, and pU was set to 0.75,
resulting in an average ORAYjS=1 of 0.51 (95% SI: 0.34, 0.73) for
the NO2 −ASD association when the population was restricted to
live births.

Discussion
In our simulations, we found that the magnitude of bias was gener-
ally weak for collider-stratification without interaction (M1),
which is consistent not only with previous research on live-birth
bias (Liew et al. 2015a) but also with existing literature that has
focused on collider-stratification in other observational settings,
such as the birth weight paradox (Hernández-Díaz et al. 2006),
obesity paradox (Glymour and Vittinghoff 2014; Sperrin et al.
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Figure 3. Bias parameters that drive live birth bias ofORAY under different selection effects. Average bias parameters in the selected population with varying simu-
lation inputs for the prevalence of the unmeasured risk factor U (pU) and the magnitude of selection effects (ORS) under two selection mechanisms and when they
both co-occur with a single U, assuming a true null effect of nitrogen dioxide (NO2; exposure A) on ASD (outcome Y). In the selected population (live births),
ORAUjS=1 is the association between A and U, and pUjS=1 is the prevalence of U. Collider-stratification without interaction (Mechanism 1) occurs when A and U
have independent causal effects on fetal loss, but with no interaction on the multiplicative scale (ORfAUgS =1, and ORAS =ORUS =ORUY =ORS). Depletion of sus-
ceptibles (Mechanism 2) occurs when A has a causal effect on fetal loss only in the subset of susceptible fetuses (U=1), but neither A orU have independent causal
effects on fetal loss (ORAS =ORUS =1, andORfAUgS =ORUY =ORS). Both mechanisms occur when A andU have independent causal effects on fetal loss, and with
interaction on the multiplicative scale (ORAS =ORUS =ORfAUgS =ORUY =ORS). Each scenario was simulated 1000 times. Points represent the mean value of the
bias parameter in each scenario. Dashed lines indicate the expected values (in the absence of live birth bias) for pUjS=1 (pUjS=1 = pU), and
ORAUjS=1(ORAUjS=1 =ORAU =1), which are the parameters in the selected population that drive the strength of live birth bias ofORAY . See Table S2 for correspond-
ing numeric data, including 95%SI. Note: ASD, autism spectrum disorder; OR, odds ratio; SI, simulation intervals.
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2016), and selection into genetic studies (Munafò et al. 2018),
where much stronger and perhaps implausible effects are required
to induce substantial bias (Greenland 2003; Smith and
Vanderweele 2019). Thus, it is unlikely that collider-stratification
without interaction alone can account for the observed association
between pregnancy-wide NO2 exposure and ASD in the original
study (Raz et al. 2018b), because few simulated scenarios yielded
ORs that were close to 0.77, the OR for NO2 during pregnancy
when mutually adjusted for postnatal exposure to NO2 (Raz et al.
2018b). Although other factors could have been at play as well,
depletion of susceptibles (M2) or both mechanisms operating
simultaneously (M1+2) would be more likely to be able to account
for the observed association in the original study all on their own,
because the simulations under these scenarios consistently gener-
ated moderate to strong protective associations due to more
extreme selection bias parameters among live births—particularly
whenmultipleUs were present.

To better understand the differences between the two selection
mechanismswith just a single unmeasured variableU, we also esti-
mated the A ! U association (ORAUjS=1) and prevalence of U
(pUjS=1) in the selected populations, because themagnitude of bias
(ORAYjS=1) is constrained by these two parameters, and the effect
of U on ASD (ORUY). However, because ORUY was the same
across mechanisms in our simulations, any discrepancies in A− Y

bias are driven by both ORAUjS=1 and pUjS=1. Here, M1 generally
yielded weaker ORAUjS=1 but similar pUjS=1 in comaprison with
M2, which explains why M1 produces a weaker bias compared
with M2. When both mechanisms co-occur (M1+2), ORAUjS=1 is
lower (i.e., A and U are more strongly negatively associated) than
eitherM1 orM2; this is unsurprising given that the effects of A and
U on selection are “super-additive” underM1+2, in that the contri-
butions of A and U together exceed the sum of their contributions
when A and U are considered separately, as shown in Equation 1.
Furthermore, pUjS=1 is also lower underM1+2, however, this does
not necessarily generate more bias because, similar to the magni-
tude of bias due to confounding (Walker 1991), bias is maximized
when pUjS=1 = 0:50 (pUjS=1 that is close to 0 or 1 actually reduces
bias, because this is akin to conditioning on or stratifying by vari-
able U). Thus, when pU ≤ 0:5, there exists a tension between the
strength of ORAUjS=1 and the distance of pUjS=1 from 0.50,
because stronger selection effects reduced pUjS=1 (i.e., it moves
further away from 0.50), such that it could offset the bias generated
by the stronger ORAUjS=1. For example, when pU =0:25 and
ORS =3:0,the bias under M1+2 was weaker than under M2
(ORAYjS=1 = 0:94 under M1+2 and ORAYjS=1 = 0:91 under M2)
because despite the stronger ORAUjS=1 (ORAUjS=1 = 0:22 under
M1+2 and ORAUjS=1 = 0:59 under M2) pUjS=1 was further away
from 0.50 (pUjS=1 = 0:02 under M1+2 and pUjS=1 = 0:14 for M2).
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Figure 4. Live birth bias of ORAY under different selection effects and different numbers of unmeasured risk factors for selection and the outcome. Average
odds ratios for the association between nitrogen dioxide (NO2; exposure A) and ASD (outcome Y) among live births S=1 (ORAYjS=1) with varying simulation
inputs for the prevalence of the unmeasured risk factor U (pU) and the magnitude of selection effects (ORS) under two selection mechanisms and when they
both co-occur with one, two or three Us, assuming a true null effect of NO2 on ASD. U is a vector that consists of ≤3 unmeasured factors (U1,U2, U3), where
input parameters were applied equally for each unmeasured factor; thus, all references to U henceforth applies to each of the unmeasured factors U1,U2, U3.
Collider-stratification without interaction (Mechanism 1) occurs when A and U have independent causal effects on fetal loss, but with no interaction on the mul-
tiplicative scale (ORfAUgS =1, and ORAS =ORUS =ORUY =ORS); Depletion of susceptibles (Mechanism 2) occurs when A has a causal effect on fetal loss only
in the subset of susceptible fetuses (U =1), but neither A or U have independent causal effects on fetal loss (ORAS =ORUS =1, and ORfAUgS =ORUY =ORS);
Both mechanisms occur when A and U have independent causal effects on fetal loss, and with interaction on the multiplicative scale
(ORAS =ORUS =ORfAUgS =ORUY =ORS). Each scenario was simulated 1000 times. Points represent the mean ORAYjS=1 in each scenario. Dashed lines indicate
the true null effect of NO2 on ASD (ORAY =1) in the absence of live birth bias, where deviations from 1.0 quantify the magnitude of live birth bias. See Table
S3 for corresponding numeric data, including 95% SI. Note: ASD, autism spectrum disorder; OR, odds ratio; SI, simulation intervals.
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On the other hand, when pU =0:75, stronger selection effects
strengthenedORAUjS=1, and lowered pUjS=1 closer to 0.50 (except
when ORS =3:0 under M1+2, where pUjS=1 = 0:19), such that
both bias parameters worked in concert to increase the bias in the
overallORAYjS=1 association.

Evaluating the range of plausible parameters for simulation
inputs is important for bias analyses. With a single unmeasured
variable U, neither M1 nor M2 produced associations near the
observed OR of 0.77 from the original study (Raz et al. 2018b).
On the other hand, when both mechanisms operate together
(M1+2) and there is just a single unmeasured variable U, not
only do the selection effects need to be quite strong, but also U
needs to be relatively common in the population to yield this
observed OR. For example, an ORS of 3.0 and pU of 0.75 yielded
an observed association of 0.75 (95% SI: 0.64, 0.89) in our simu-
lations. Thus, with a single U, not only are there very few scenar-
ios that could produce the observed estimate, but the magnitude
of the input parameters that could potentially generate the bias
strains credibility. That is, although it is perhaps plausible that
one of the selection effects is that large, it seems unlikely that all
three are. Therefore, strong bias is more likely under either M2 or
M1+2 when U is a composite of uncontrolled variables (as well
as those that have been controlled for, just imperfectly), because
the ORS would only need to be between 1.5 and 2.0 to generate a
bias of similar magnitude. With selection effects of 2.0, and
pU =0:75 for each U, the ORAYjS=1 was 0.87 and 0.78 under M2
when there were two and three Us, respectively; whereas, with
the same input parameters, the ORAYjS=1 was 0.79 and 0.72 under
M1+2 when there were two and three Us, respectively. Even if
these unmeasured factors were just as strongly associated with S
and Y, but were less prevalent in the population, the mean
ORAYjS=1 is only slightly attenuated. For example, under the
same selection effects, but when pU =0:50 for each U, the
ORAYjS=1 was 0.90 and 0.82 under M2 when there were two and
three Us, respectively, and the ORAYjS=1 was 0.83 and 0.78 under
M1+2 when there were two and three Us, respectively.

Potential candidates for U include prenatal stress (Bercum
et al. 2015; Beversdorf et al. 2005; Bruckner et al. 2016; Brunton
2013; Class et al. 2014; Coughlan et al. 2014; Dean et al. 2015;
Kinney et al. 2008a, 2008b; Li et al. 2012; Nepomnaschy et al.
2006; Plana-Ripoll et al. 2016; Roberts et al. 2013, 2014;
Wainstock et al. 2013; Walder et al. 2014; Wisborg et al. 2008),
maternal smoking (Caramaschi et al. 2018; Jung et al. 2017;
Marufu et al. 2015; Pineles et al. 2014), genetic factors (Grove
et al. 2019; Page and Silver 2016; Risch et al. 1999), and envi-
ronmental stressors such as endocrine-disrupting chemicals
(EDCs) (Jensen et al. 2015; Kalkbrenner et al. 2014; Krieg et al.
2016; Pelch et al. 2019). Many of these associations have been
reported to be in line with or stronger than an ORS of 1.5–2.0,
and the collective exposure to these factors (or just a subset) in
the population is likely not uncommon. For example, maternal
smoking during pregnancy (any vs. none) has been associated
with an OR of 1.47 for stillbirth (Marufu et al. 2015) and an OR
of 1.56 for autism (Caramaschi et al. 2018). Furthermore, EDCs
such as polychlorinated biphenyls (PCBs) have been associated
with pregnancy loss with ORs ranging from 1.6 to 2.52, depend-
ing on the type of PCB, when comparing those accidentally
exposed vs. those unexposed to accidental contamination of rice
oil during the Yusho incident in Japan in 1968 (Krieg et al. 2016;
Tsukimori et al. 2008). PCBs have also been associated with
increased odds of autism, where a prior study reported ORs rang-
ing from 1.20 to 1.97, depending on the type of PCB, when com-
paring the highest to the lowest quartile of exposure (Bernardo
et al. 2019). Although we identified these Us for our illustrative
example of NO2 and ASD, they are also relevant for the

estimation of the effects of any exposure during pregnancy that
has the potential to cause loss and ASD. Furthermore, an ORAS of
1.5 to 2.0 is also plausible for the effects of NO2 on loss.
Although past studies have reported ORs ranging from 1.04 to
1.27 for the association between NO2 (typically per 10 ppb) and
pregnancy loss (Grippo et al. 2018), these are likely biased down-
ward because only a subset of pregnancy losses come to medical
attention and can be studied. That is, early pregnancy loss, which
has been estimated to be around 20%–30% (Wilcox et al. 1988),
are typically not observed, such that NO2-induced loss early in
pregnancy would go undetected, and the resultant association
would underestimate the true harmful effect of NO2 on pregnancy
loss. Because our simulation code is available online, we encour-
age other investigators to evaluate the potential bias arising from
live-birth bias with input parameter values that are relevant to
their own research.

Although our simulations could generate the magnitude of the
protective effect reported from the original nested case–control
study using a range of plausible input parameter values, they are
simplified depictions of potential causal structures and, therefore,
should not be directly compared with estimates from analyses
using real data. For example, for simplicity, we assumed no con-
founding of the exposure effects, no loss to follow-up among
live-born children, no measurement error, and no seasonal or
time trends in the exposure or outcome. It is unlikely that all
these assumptions would hold in a real analysis. The potential
bias in the original nested case–control study may actually be a
net downward bias (assuming that exposure to NO2 during preg-
nancy is not neuroprotective) arising from a combination of resid-
ual and/or unmeasured confounding, selection bias due to
nonrandom attrition between birth and ASD assessment
(although such selection would be subject to the same issues we
describe here for live-birth bias), exposure measurement error
(which typically biases the estimate toward the null), outcome
misclassification, and model misspecification (e.g., imperfect
control for seasonal trends) in addition to live-birth bias.
However, the simplicity of our current simulation study is also its
strength, in that in our simulations we can isolate and fully iden-
tify the bias due to the specific fetal selection mechanism.
Furthermore, as prior knowledge of the magnitude and sign of
the selection effects (ORAS, ORUS, ORfAUgS, ORUY) is limited
because pregnancy loss is a challenging outcome to study (Finer
and Zolna 2016; Wilcox et al. 1988), we set these ORs to be
equal in our simulations for simplicity, but presumably similar
associations could be seen with some OR lower and others
higher. Along similar lines, we ran our simulations under the null
for simplicity, which is sufficient to evaluate the magnitude of
bias, because it does not depend on the effect of NO2 on ASD.
For example, if we observe an ORAYjS=1 of 0.75 for a given
selection mechanism under the null, then a true effect of
ORAY =1:33 (i.e., the inverse of 0.75) would be rendered null by
this selection mechanism. Finally, we also assumed that exposure
groups are exchangeable in the total population of all conceptions
(e.g., conceptions are not affected by selection processes induced
by preconception exposures). However, this exchangeability may
not be the case because there are likely selection processes that
influence fertility (i.e., the likelihood of conception). Excluding
women of reproductive age who are trying but are unable to con-
ceive (because pregnancy is a requirement to study exposures
during pregnancy) may lead to biased exposure–health effects in
the set of actual conceptions, which differs from the total popula-
tion of intended conceptions. This bias would act through mecha-
nisms similar to those that we address in this paper’s simulations
and therefore could amplify live-birth bias in an analysis with
real data (Figure S1).
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Here, we show that live-birth bias under plausible simulation
parameters can lead to associations of NO2 and ASD that are bi-
ased downward, where the largest bias occurs when both M1 and
M2 both operate simultaneously (i.e., M1+2). This bias may
explain the inconsistent body of literature (Flores-Pajot et al.
2016; Lam et al. 2016; Raz et al. 2018b; Weisskopf et al. 2015;
Yang et al. 2017), where truly adverse effects may appear not as
harmful, null, or even protective. Although we used NO2 and
ASD for our illustrative example, this bias can extend to other
studies relevant to fetal programming (Barker 2004), which can
limit the identification of harmful prenatal exposure effects and
prevent the development of interventions during pregnancy
aimed at promoting better health. For example, it is possible that
live-birth bias can also explain the unexpected negative associa-
tions between prenatal exposure to perfluoroalkyl substances
with ASD (Hertz-Picciotto et al. 2008) and attention-deficit/
hyperactivity disorder (Fei and Olsen 2011; Liew et al. 2015b;
Ode et al. 2014; Stein et al. 2013).

To rule out live-birth bias as a threat to internal validity, we
would need to show that the exposure in question does not affect
selection (i.e., fetal loss); that is, if we find that exposure does not
affect selection, either independently or in conjunction with
another risk factor for fetal loss, then the association with the out-
come cannot be biased through this mechanism. If, on the other
hand, exposure is associated with selection, then to potentially
mitigate or eliminate this bias, we would need to collect informa-
tion on U (something we would need to plan for in the study
design phase) and adjust for it in the analysis. Last, if there is rea-
son to believe that there are no common causes of selection and
the outcome, then there would be no live-birth bias, even if the
exposure affects selection (although this is impossible to verify in
practice). It would still be worthwhile to quantify the effect of ex-
posure on selection, because it gives us insight into the change in
the potential number of losses and the child outcome (when con-
sidered jointly with its effect on the outcome) if we were to inter-
vene to set exposure to another level. All of these analyses
require estimating the effects on selection, which is no simple
feat; however, new approaches for studying pregnancy loss with-
out needing to enumerate the population at risk (i.e., all concep-
tions) (Kioumourtzoglou et al. 2019) makes such an undertaking
less daunting. Thus, our study findings highlight the need for cau-
tious interpretations of studies of the effects of prenatal exposures
on postnatal outcomes and for more investment into research on
the determinants of pregnancy loss.
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